Low-Speed Impact Damage in Filament-Wound CFRP Composite Pressure Vessels

Author:

Matemilola S. A.1,Stronge W. J.1

Affiliation:

1. Engineering Department, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.

Abstract

Quasi-static and impact tests were conducted on filament-wound carbon fiber composite pressure vessels to study factors that affect burst pressure. Observed damage included fiber microbuckling, matrix cracking, and delamination. Fiber microbuckling of the outer surface layer near the impact point was the main factor that reduced the burst pressure of the vessels. This type of damage was visually detectable on the surface. For similar levels of missile kinetic energy, the impact damage to filament-wound composite pressure vessels depends on size and shape of the colliding body in the contact area. Burst pressure for a damaged vessel decreases with the ratio of axial length of damaged fibers 1, to vessel wall thickness h, up to a ratio 1/h = 3; beyond this length of damaged section the burst pressure was independent of length of damage. Strain measurements near the region of loading showed that damage related to fiber microbuckling is sensitive to strain rate. At locations where impact damage was predominately due to fiber microbuckling, the failure strain was about six times the strain for microbuckling during quasi-static loading.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3