Architected Piezoelectric Metamaterial With Designable Full Nonzero Piezoelectric Coefficients

Author:

Yu Bo1,Lun Yingzhuo1,Hou Zewei23,Hong Jiawang23

Affiliation:

1. Beijing Institute of Technology School of Aerospace Engineering, , Beijing 100081 , China

2. Beijing Institute of Technology School of Aerospace Engineering, , Beijing 100081 , China ;

3. Beijing Institute of Technology Chongqing Innovation Center , Chongqing 401120 , China

Abstract

Abstract Piezoelectric metamaterials have received extensive attention in the fields of robotics, nondestructive testing, energy harvesting, etc. Natural piezoelectric ceramics possess only five nonzero piezoelectric coefficients due to the crystal symmetry of ∞mm, which has limited the development of related devices. To obtain nonzero piezoelectric coefficients, previous studies mainly focus on assembling piezoelectric ceramic units or multiphase metamaterials. However, only part of the nonzero piezoelectric coefficients or locally piezoelectric electromechanical modes are achieved. Additionally, it still remains a challenge for manipulating the piezoelectric coefficients in a wide range. In this work, full nonzero piezoelectric coefficients are obtained by symmetry breaking in the architected piezoelectric metamaterial. The piezoelectric coefficients are designable over a wide range from positive to negative through manipulating the directions of each strut for the three-dimensional architected lattice. The architected metamaterials exhibit multiple positive/inverse piezoelectric modes, including normal and shear deformation. Finally, a smart gradient architected piezoelectric metamaterial is designed to take advantage of this feature, which can sense the position of the normal and shear force. This work paves the way for the manipulation of piezoelectric metamaterial in a wide range with designable full nonzero piezoelectric coefficients, thereby enabling application potential in the fields of smart sensing and actuation.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3