A Mechanics Model of Soft Network Materials With Periodic Lattices of Arbitrarily Shaped Filamentary Microstructures for Tunable Poisson's Ratios

Author:

Liu Jianxing123,Zhang Yihui124

Affiliation:

1. AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China;

2. Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China;

3. Center for Mechanics and Materials, Tsinghua University, Beijing 100084, China

4. Center for Mechanics and Materials, Tsinghua University, Beijing 100084, China e-mail:

Abstract

Soft network materials that incorporate wavy filamentary microstructures have appealing applications in bio-integrated devices and tissue engineering, in part due to their bio-mimetic mechanical properties, such as “J-shaped” stress–strain curves and negative Poisson's ratios. The diversity of the microstructure geometry as well as the network topology provides access to a broad range of tunable mechanical properties, suggesting a high degree of design flexibility. The understanding of the underlying microstructure-property relationship requires the development of a general mechanics theory. Here, we introduce a theoretical model of infinitesimal deformations for the soft network materials constructed with periodic lattices of arbitrarily shaped microstructures. Taking three representative lattice topologies (triangular, honeycomb, and square) as examples, we obtain analytic solutions of Poisson's ratio and elastic modulus based on the mechanics model. These analytic solutions, as validated by systematic finite element analyses (FEA), elucidated different roles of lattice topology and microstructure geometry on Poisson's ratio of network materials with engineered zigzag microstructures. With the aid of the theoretical model, a crescent-shaped microstructure was devised to expand the accessible strain range of network materials with relative constant Poisson's ratio under large levels of stretching. This study provides theoretical guidelines for the soft network material designs to achieve desired Poisson's ratio and elastic modulus.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3