Acoustic Emission Characterization of Natural Fiber Reinforced Plastic Composite Machining Using a Random Forest Machine Learning Model

Author:

Wang Zimo1,Chegdani Faissal2,Yalamarti Neehar1,Takabi Behrouz3,Tai Bruce3,El Mansori Mohamed2,Bukkapatnam Satish1

Affiliation:

1. Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843

2. Arts et Métiers ParisTech, MSMP Laboratory/EA7350, Rue Saint Dominique BP508, Châlons-en-Champagne 51006, France

3. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843

Abstract

Abstract Natural fiber reinforced plastic (NFRP) composites are eliciting an increased interest across industrial sectors, as they combine a high degree of biodegradability and recyclability with unique structural properties. These materials are machined to create components that meet the dimensional and surface finish tolerance specifications for various industrial applications. The heterogeneous structure of these materials—resulting from different fiber orientations and their complex multiscale structure—introduces a distinct set of material removal mechanisms that inherently vary over time. This structure has an adverse effect on the surface integrity of machined NFRPs. Therefore, a real-time monitoring approach is desirable for timely intervention for quality assurance. Acoustic emission (AE) sensors that capture the elastic waves generated from the plastic deformation and fracture mechanisms have potential to characterize these abrupt variations in the material removal mechanisms. However, the relationship connecting AE waveform patterns with these NFRP material removal mechanisms is not currently understood. This paper reports an experimental investigation into how the time–frequency patterns of AE signals connote the various cutting mechanisms under different cutting speeds and fiber orientations. Extensive orthogonal cutting experiments on unidirectional flax fiber NFRP samples with various fiber orientations were conducted. The experimental setup was instrumented with a multisensor data acquisition system for synchronous collection of AE and vibration signals during NFRP cutting. A random forest machine learning approach was employed to quantitatively relate the AE energy over specific frequency bands to machining conditions and hence the process microdynamics, specifically, the phenomena of fiber fracture and debonding that are peculiar to NFRP machining. Results from this experimental study suggest that the AE energy over these frequency bands can correctly predict the cutting conditions to ∼95% accuracies, as well as the underlying material removal regimes.

Funder

National Science Foundation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3