Early Diagnoses of Acute Coroner Syndrome Based on Machine Learning Model

Author:

Tiryaki Umut Utku1ORCID,Karaduman Gül2ORCID,Cuhadar Sare Nur1ORCID,Uyanik Ahmet3ORCID,Durmaz Habibe1ORCID

Affiliation:

1. KARAMANOGLU MEHMETBEY UNIVERSITY

2. KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ

3. Konya Meram State Hospital

Abstract

Cardiovascular diseases are a leading global cause of death, particularly in low to middle-income countries. Early and accurate diagnosis of Acute Coronary Syndrome (ACS) is vital, but limited access to healthcare hinders effective management. This study utilized machine learning to develop mathematical models for ACS risk detection. Data from 249 individuals with ACS or suspected heart disease were used to construct twelve models with different parameters and classifiers. Performance indicators, including accuracy, Matthews correlation coefficient, and precision, were employed for evaluation. The Random Forest classifier demonstrated superior performance, achieving 90.45% accuracy for internal validation and 86% for external validation. Critical criteria for ACS diagnosis were CK-MB, age, coronary artery disease, and Troponin T value. The models developed in this study significantly prevent potential deaths via rapid intervention and reduce healthcare expenditures by minimizing unnecessary human resources and repeat tests.

Publisher

International Journal of Engineering and Applied Sciences

Reference63 articles.

1. Wilkins, E., Wilson, L., Wickramasinghe, K., Bhatnagar, P., Leal, J., Luengo-Fernandez, R., Burns, R., Rayner, M., Townsend, N., European Cardiovascular Disease Statistics 2017. European Heart Network, 2017.

2. Thomas, H., Diamond, J., Vieco, A., Chaudhuri, S., Shinnar, E., Cromer, S., Perel, P., Mensah, G. A., Narula, J., Johnson, C. O., Roth, G. A., Moran, A. E., Global Atlas of Cardiovascular Disease 2000-2016: The Path to Prevention and Control. Global heart, 13(3), 143–163, 2018.

3. World Health Organization, Cardiovascular Diseases, 2020.

4. Şencan, I., Keskinkılıç, B., Ekinci, B., Öztemel, A., Sarıoğlu, G., Çobanoğlu, N., Türkiye Kalp ve Damar Hastalıkları Önleme ve Kontrol Programı Eylem Planı (2015-2020). T.C. Türkiye Halk Sağlığı Kurumu. T.C. Sağlık Bakanlığı Yayın, 988-1-63,2015.

5. Benziger, C. P., Roth, G. A., & Moran, A. E., The Global Burden of Disease Study and the Preventable Burden of NCD. Global heart, 11(4), 393–397, 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3