Comparison of the Performance of Drag Reducing Agent Between 2.5 cP Oil and 6.0 cP Oil in Multiphase Flow in Horizontal Pipes

Author:

Kang C.1,Jepson W. P.1

Affiliation:

1. Ohio University, Athens, OH

Abstract

Abstract Experimental studies have been performed in a 10 cm diameter, 36 m long, multiphase flow loop to examine the effect of drag reducing agents using 6 cP oil. Studies were performed for superficial liquid velocities of 0.5, 1.0 and 1.5 m/s and superficial gas velocities between 2 and 12 m/s. Carbon dioxide was used as the gas phase. The drag reducing agent (DRA) concentrations were 20 and 50 ppm. The system was maintained at a pressure of 0.13 MPa and a temperature of 25 °C. The comparison of the conditioning of flow with DRA between 2.5 cP oil and 6 cP oil is presented. The results show that pressure drop in both 2.5 cP oil and 6 cP oil was reduced significantly in multiphase flow with addition of DRA. A DRA concentration of 50 ppm was more effective than 20 ppm DRA for all cases. As the oil viscosity was increased from 2.5 cP to 6 cP oil, the transition to annular flow was observed to occur at lower superficial gas velocities. For slug flow and lower superficial gas velocities, the effectiveness in 2.5 cP oil was much higher than that in 6 cP oil with addition of DRA. However, for higher superficial gas velocities, the effectiveness in both oils was similar. For annular flow, the effectiveness in 2.5 cP oil was higher than in 6 cP oil with 50 ppm DRA. At low superficial gas velocities, DRA in 2.5 cP oil was more effective in reducing the slug frequency. This led to a higher average pressure drop reduction in 2.5 cP oil. However, at higher superficial gas velocities, the slug frequency decreased in both oils almost the same magnitude.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3