Model-Based Actuator Trajectories Optimization for a Diesel Engine Using a Direct Method

Author:

Benz Michael1,Hehn Markus1,Onder Christopher H.1,Guzzella Lino1

Affiliation:

1. Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland

Abstract

Abstract This paper proposes a novel optimization method that allows a reduction in the pollutant emission of diesel engines during transient operation. The key idea is to synthesize optimal actuator commands using reliable models of the engine system and powerful numerical optimization methods. The engine model includes a mean-value engine model for the dynamics of the gas paths, including the turbocharger of the fuel injection, and of the torque generation. The pollutant formation is modeled using an extended quasi-static modeling approach. The optimization substantially changes the input signals, such that the engine model is enabled to extrapolate all relevant outputs beyond the regular operating area. A feedforward controller for the injected fuel mass is used to eliminate the nonlinear path constraints during the optimization. The model is validated using experimental data obtained on a transient engine test bench. A direct single shooting method is found to be most effective for the numerical optimization. The results show a significant potential for reducing the pollutant emissions during transient operation of the engine. The optimized input trajectories derived assist the design of sophisticated engine control systems.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3