Velocity Effects on Robotic Manipulator Dynamic Performance

Author:

Bowling Alan P.1,Kim ChangHwan1

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556

Abstract

This article explores the effect that velocities have on a nonredundant robotic manipulator’s ability to accelerate its end-effector, as well as to apply forces/moments to the environment at the end-effector. This work considers velocity forces, including Coriolis forces, and the reduction of actuator torque with rotor velocity described by the speed-torque curve, at a particular configuration of a manipulator. The focus here is on nonredundant manipulators with as many actuators as degrees-of-freedom. Analysis of the velocity forces is accomplished using optimization techniques, where the optimization problem consists of an objective function and constraints which are all purely quadratic forms, yielding a nonconvex problem. Dialytic elimination is used to find the globally optimal solution to this problem. The proposed method does not use iterative numerical optimization methods. The PUMA 560 manipulator is used as an example to illustrate this methodology. The methodology provides an analytical analysis of the velocity forces which insures that the globally optimal solution to the associated optimization problem is found.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference27 articles.

1. Manipulability of Robotic Mechanisms;Yoshikawa;Int. J. Robot. Res.

2. A Structured Algorithm for Minimum l∞-Norm Solutions and Its Application to a Robot Velocity Workspace Analysis;Lee;Robotica

3. Dexterity Indices for Planar and Spherical Robotic Manipulators;Gosselin

4. Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators;Angeles;Int. J. Robot. Res.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3