An Online Transfer Learning Approach for Identification and Predictive Control Design With Application to RCCI Engines

Author:

Bao Yajie1,Mohammadpour Velni Javad1,Shahbakhti Mahdi2

Affiliation:

1. University of Georgia

2. University of Alberta

Abstract

Abstract This paper presents a framework to refine identified artificial neural networks (ANN) based state-space linear parameter-varying (LPV-SS) models with closed-loop data using online transfer learning. An LPV-SS model is assumed to be first identified offline using inputs/outputs data and a model predictive controller (MPC) designed based on this model. Using collected closed-loop batch data, the model is further refined using online transfer learning and thus the control performance is improved. Specifically, fine-tuning, a transfer learning technique, is employed to improve the model. Furthermore, the scenario where the offline identified model and the online controlled system are “similar but not identitical” is discussed. The proposed method is verified by testing on an experimentally validated high-fidelity reactivity controlled compression ignition (RCCI) engine model. The verification results show that the new online transfer learning technique combined with an adaptive MPC law improves the engine control performance to track requested engine loads and desired combustion phasing with minimum errors.

Publisher

American Society of Mechanical Engineers

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3