End-to-End Deep Neural Network Based Nonlinear Model Predictive Control: Experimental Implementation on Diesel Engine Emission Control

Author:

Gordon David C.ORCID,Norouzi ArminORCID,Winkler AlexanderORCID,McNally Jakub,Nuss EugenORCID,Abel Dirk,Shahbakhti MahdiORCID,Andert JakobORCID,Koch Charles R.ORCID

Abstract

In this paper, a deep neural network (DNN)-based nonlinear model predictive controller (NMPC) is demonstrated using real-time experimental implementation. First, the emissions and performance of a 4.5-liter 4-cylinder Cummins diesel engine are modeled using a DNN model with seven hidden layers and 24,148 learnable parameters created by stacking six Fully Connected layers with one long-short term memory (LSTM) layer. This model is then implemented as the plant model in an NMPC. For real-time implementation of the LSTM-NMPC, an open-source package acados with the quadratic programming solver HPIPM (High-Performance Interior-Point Method) is employed. This helps LSTM-NMPC run in real time with an average turnaround time of 62.3 milliseconds. For real-time controller prototyping, a dSPACE MicroAutoBox II rapid prototyping system is used. A Field-Programmable Gate Array is employed to calculate the in-cylinder pressure-based combustion metrics online in real time. The developed controller was tested for both step and smooth load reference changes, which showed accurate tracking performance while enforcing all input and output constraints. To assess the robustness of the controller to data outside the training region, the engine speed is varied from 1200 rpm to 1800 rpm. The experimental results illustrate accurate tracking and disturbance rejection for the out-of-training data region. At 5 bar indicated mean effective pressure and a speed of 1200 rpm, the comparison between the Cummins production controller and the proposed LSTM-NMPC showed a 7.9% fuel consumption reduction, while also decreasing both nitrogen oxides (NOx) and Particle Matter (PM) by up to 18.9% and 40.8%.

Funder

Natural Sciences Research Council of Canada

Deutsche Forschungsgemeinschaft

German Research Association

Future Energy Systems

University of Alberta

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3