Gradient Deformation Models at Nano, Micro, and Macro Scales

Author:

Aifantis E. C.1

Affiliation:

1. Laboratory of Mechanics and Materials, Aristotle University of Thessaloniki, Thessaloniki 54006, Greece; Center for Mechanics of Materials, Michigan Technological University, Houghton, MI 49931

Abstract

Various deformation models incorporating higher-order gradients are discussed and their implications are considered in a variety of problems ranging from the determination of the size of dislocation cores or elastic dislocation interaction to the determination of wavelengths of dislocation patterns or heterogeneous dislocation distributions and the determination of the structure of solid interfaces and of localized strain zones during adiabatic shear deformation. Different scales are involved in each one of these problems: the nanoscale for single dislocations, the microscale for dislocation patterning, and the macroscale for adiabatic shear banding. Accordingly, different gradient models apply for each case, different types of gradient terms are involved and different expressions of the gradient coefficients are assumed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference70 articles.

1. A. Acharya and J. L. Bassani, 1995, “Incompatible lattice deformation and crystal plasticity,” N. Ghoniem, ed., Plastic and Fracture Instabilities in Materials, AMD-Vol. 200/MD-57, 75–80, ASME, New York.

2. A. Acharya and J. L. Bassani, 1996, “On non-local flow theories that preserve the classical structure of incremental boundary value problems,” A. Pineau and A. Zaoui, eds., IUTAM Symp. on Micromechanics of Plasticity and Damage of Multiphase Materials, Paris, Aug. 29-Sept. 1, 1995, 3–9, Kluwer, The Netherlands.

3. E. C. Aifantis, 1981, “Elementary physicochemical degradation processes,” A. P. S. Selvadurai, ed., Mechanics of Structured Media, 301–317, Elsevier, Amsterdam-Oxford-New York.

4. E. C. Aifantis, 1982, “Some thoughts on degrading materials,” S. N. Atluri and J. E. Fitzerald (eds) NSF Workshop on Mechanics of Damage and Fracture, Georgia Tech., Atlanta, 1–12.

5. E. C. Aifantis, 1983, “Dislocation kinetics and the formation of deformation bands,” G. C. Sih and J. W. Provan (eds) Defects, Fracture and Fatigue, Proceedings of International Symposium, May 1982, Mont Gabriel, Canada, 75–84, Martinus-Nijhoff, The Hague.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3