Size-dependent nonlinear free vibration of magneto-electro-elastic nanobeams by incorporating modified couple stress and nonlocal elasticity theory

Author:

Zhou Yang,Zheng Yu-fangORCID,Wang Feng,Chen Chang-ping

Abstract

Abstract Magneto-Electro-Elastic (MEE) Composites, as an innovative functional material blend, are composed of multiple materials, boasting exceptional strength, rigidity, and an extraordinary magneto-electric interaction effect. This paper establishes a nonlocal modified couple stress (NL-MCS) magneto-electro-elastic nanobeam dynamic model. To accurately capture the intricate influences of scale effects on nanostructures, This model meticulously examines scale effects from two distinct perspectives: leveraging nonlocal elasticity theory to elucidate the softening phenomena in nanostructures stemming from long-range particle interactions, and employing modified couple stress theory to reveal the hardening effects attributed to the rotational behavior of particles within the structure. By incorporating Von Karman geometric nonlinearity, Reddy’s third-order shear deformation theory and Maxwell’s equations, the governing equations for the nonlinear free vibration of MEE nanobeams are derived using Hamilton’s principle. Finally, a two-step perturbation method is employed to solve these equations. Two-step perturbation method disintegrates the solution process into two stages, iteratively approximating and refining the solution, thereby progressively unraveling the intricate details and enhancing the precision of the solution in a systematic manner. Finally, the nonlinear free vibration behavior of MEE nanobeams is explored under the coupled magnetic-electric-elastic fields, with a focus on the effects of various factors that including length scale parameters, nonlocal parameters, Winkler-Pasternak coefficients, span-to-thickness ratios, applied voltages and magnetic potentials.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3