Wind Power Deterministic Prediction and Uncertainty Quantification Based on Interval Estimation

Author:

Huang Hui12,Jia Rong3,Liang Jun4,Dang Jian3,Wang Zhengmian3

Affiliation:

1. School of Electrical Engineering, Xi'an University of Technology, Xi'an 710048, China;

2. School of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou 450011, China

3. School of Electrical Engineering, Xi'an University of Technology, Xi'an 710048, China

4. School of Engineering, Cardiff University, Cardiff CF24 3AA, Wales, UK

Abstract

Abstract With the increasing penetration of wind power into modern power systems, accurate forecast models play a crucial role in large-scale wind power consumption and power system stability. To improve the accuracy and reliability of ultrashort-term wind power prediction, a novel deterministic prediction model and uncertainty quantification with interval estimation were proposed in this study. In consideration of the dynamic characteristics of a generator and conditional dependence, the generator rotor speed and pitch angle were regarded as the indicators of the dynamic characteristics of the generator, and light gradient boosting machine (LGBM) with a Bayesian optimization method was explored to build the deterministic prediction model. Considering the conditional dependence between output power and forecast error, a fuzzy C-means clustering method was used to cluster forecast errors into different clusters, and the best error probability distribution was obtained by fitting the error histogram with nonparametric kernel density estimation. Prediction intervals at different confidence levels were calculated, and the error uncertainty was quantified. A case study was conducted to compare prediction accuracy and reliability by using the present and proposed methods. Results demonstrate that the LGBM deterministic prediction model combined with Bayesian optimization has better prediction accuracy and lower computational cost than the comparative models, specifically when the input features are high-dimensional big data. The nonparametric estimation method with conditional dependence is reliable for interval prediction. The proposed method has a certain reference value for wind turbines participating in frequency regulation and power control of power grid.

Funder

Agro-Industry R and D Special Fund of China

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3