Heat Transfer for the Film-Cooled Vane of a 1-1/2 Stage High-Pressure Transonic Turbine—Part I: Experimental Configuration and Data Review With Inlet Temperature Profile Effects

Author:

Kahveci Harika S.1,Haldeman Charles W.1,Mathison Randall M.1,Dunn Michael G.2

Affiliation:

1. e-mail:

2. e-mail:  Gas Turbine Laboratory, The Ohio State University, 2300 West Case Road, Columbus, OH 43235

Abstract

This paper investigates the vane airfoil and inner endwall heat transfer for a full-scale turbine stage operating at design corrected conditions under the influence of different vane inlet temperature profiles and vane cooling flow rates. The turbine stage is a modern 3D design consisting of a cooled high-pressure vane, an un-cooled high-pressure rotor, and a low-pressure vane. Inlet temperature profiles (uniform, radial, and hot streaks) are created by a passive heat exchanger and can be made circumferentially uniform to within ±5% of the bulk average inlet temperature when desired. The high-pressure vane has full cooling coverage on both the airfoil surface and the inner and outer endwalls. Two circuits supply coolant to the vane, and a third circuit supplies coolant to the rotor purge cavity. All of the cooling circuits are independently controlled. Measurements are performed using double-sided heat-flux gauges located at four spans of the vane airfoil surface and throughout the inner endwall region. Analysis of the heat transfer measured for the uncooled downstream blade row has been reported previously. Part I of this paper describes the operating conditions and data reduction techniques utilized in this analysis, including a novel application of a traditional statistical method to assign confidence limits to measurements in the absence of repeat runs. The impact of Stanton number definition is discussed while analyzing inlet temperature profile shape effects. Comparison of the present data (Build 2) to the data obtained for an uncooled vane (Build 1) clearly illustrates the impact of the cooling flow and its relative effects on both the endwall and airfoils. Measurements obtained for the cooled hardware without cooling applied agree well with the solid airfoil for the airfoil pressure surface but not for the suction surface. Differences on the suction surface are due to flow being ingested on the pressure surface and reinjected on the suction surface when coolant is not supplied for Build 2. Part II of the paper continues this discussion by describing the influence of overall cooling level variation and the influence of the vane trailing edge cooling on the vane heat transfer measurements.

Publisher

ASME International

Subject

Mechanical Engineering

Reference29 articles.

1. A Film-Cooling CFD Bibliography: 1971–1996;Int. J. Rotating Mach.,1998

2. Turbine Airfoil Leading Edge Film Cooling Bibliography;Int. J. Rotating Mach.,2000

3. Some Considerations in the Thermal Design of Turbine Airfoil Cooling Systems;Int. J. Turbo Jet Engines,1983

4. Progress Towards Understanding and Predicting Heat Transfer in the Turbine Gas Path;Int. J. Heat Fluid Flow,1993

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3