Characteristics of Turbulence in a Turbofan Stage

Author:

Maunus Jeremy1,Grace Sheryl2,Sondak Douglas3,Yakhot Victor4

Affiliation:

1. Graduate Research Assistant

2. Associate Professor Mem. ASME e-mail:

3. Scientific Programmer Mem. ASME e-mail:

4. Professor e-mail:  Department of Mechanical Engineering, Boston University, Boston, MA 02215

Abstract

Two-equation turbulence models are commonly used in the simulation of turbomachinery flow fields, but there are limited experimental data available to validate the resulting turbulence quantities. Experimental measurements are available from NASA’s Source Diagnostic Test (SDT), a 1/5th scale model representation of the bypass stage of a turbofan engine. Detailed unsteady hot-wire anemometer data were taken at two axial locations between the rotor and fan exit guide vanes (FEGVs). Here, an accurate and consistent procedure is used to obtain the turbulent kinetic energy, dissipation rate, and integral length scale from structure functions calculated using the SDT data. These results are compared to the solutions provided by four proprietary CFD codes that employ two-equation turbulence models. The simulations are shown to predict the turbulent kinetic energy and length scale reasonably well as well as the trend in mean dissipation. The actual mean dissipation rates differ by nearly two orders of magnitude due to a difference in interpretation between the classical definition and what is used in CFD.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3