Investigation on accuracy of numerical simulation of aerodynamic noise of single-stage axial fan

Author:

Lu HuabingORCID,Xiao YouhongORCID,Liu Zhigang,Yuan YeORCID,Zhou PeilinORCID,Yang Guanghui

Abstract

The prediction accuracy of turbomachinery aerodynamic noise, particularly in relation to broadband noise with uncertain factors, has long been a challenging issue. Previous studies have not fully comprehended the factors influencing its prediction accuracy, lacking an objective and comprehensive evaluation method. An improved approach combining orthogonal experiment design and principal component analysis is employed to address these limitations. The evaluation method expands the noise metrics and provides a comprehensive assessment of the accuracy of numerical simulation for aerodynamic noise. The evaluation method is utilized to optimize and quantitatively analyze the impact of the refinement size of the core area on noise prediction for single-stage axial fans. Subsequently, the three metrics, namely, Z1, Z2, and broadband noise Z3, are integrated using PCA to form a new integrated optimal metric Ztotal. The influence of different refinement sizes, particularly on Ztotal, is quantitatively examined. The findings reveal that the mesh size of the stator wake (D area) exhibits the most significant influence on noise prediction accuracy, with a calculated weight of 81.3% on noise accuracy. Furthermore, a comprehensive investigation is conducted on the influence of turbulence models and the wall Y+ value on aerodynamic noise. Detached-eddy simulation and large eddy simulation demonstrate effective capabilities in simulating both upstream and downstream turbulent flow characteristics of the stator, enabling accurate prediction of broadband noise. This study presents a set of numerical simulation schemes that achieve precise prediction of turbomachinery aerodynamic noise.

Funder

Fundamental Research Funds for the Central Universities

National Science and Technology Major Project

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference55 articles.

1. A research plan: The relationship of ear, head, & neck anthropometry to military hearing protection effectiveness,2001

2. Comparison of acoustic and hydrodynamic cavitation: Material point of view;Phys. Fluids,2023

3. NASA Glenn's contributions to aircraft engine noise research;J. Aerosp. Eng.,2013

4. Numerical investigation of the bevelled effects on shock structure and screech noise in planar supersonic jets;Phys. Fluids,2020

5. Large eddy simulations in 2030 and beyond;Philos. Trans. R. Soc. A,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3