Comparison of acoustic and hydrodynamic cavitation: Material point of view

Author:

Hofmann Julien12ORCID,Thiébaut Charles1ORCID,Riondet Michel2ORCID,Lhuissier Pierre1ORCID,Gaudion Sylvain3ORCID,Fivel Marc1ORCID

Affiliation:

1. Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP, F-38000 Grenoble, France

2. Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, F-38000 Grenoble, France

3. Laboratory General Electric Advanced Technology, F-38000 Grenoble, France

Abstract

This study investigated the difference in mechanical response of the martensitic stainless steel X3CrNiMo13-4/S41500/CA6 NM QT780 between hydrodynamic and acoustic cavitation erosion. The results show that acoustic cavitation erosion generates small pits at a high temporal frequency on the material, while hydrodynamic cavitation erosion produces larger pits at a lower frequency. Acoustic cavitation erosion tests have been performed using a 20 kHz ultrasonic horn located at 500  μm in front of a specimen. This experimental setup, known as an indirect method, is inspired from the ASTM G32 standard. Hydrodynamic cavitation erosion tests were conducted with classic experimental conditions of a PREVERO device: a cavitation number of 0.87 corresponding to a flow velocity of 90 [Formula: see text] and an upstream pressure of 40 bars. In addition, for a given exposure time, the percentage of surface covered by the pits is smaller for acoustic cavitation than for hydrodynamic cavitation. Three successive steps have been identified during the damage process: persistent slip bands (PSB) first appear on the surface, cracks initiate and propagate at the PSB locations and nonmetallic interfaces, and finally, parts of the matter are torn off. A careful time examination of the same small area of the exposed sample surface by scanning electron microscopy reveals that acoustic cavitation is faster to initiate damage than hydrodynamic cavitation.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3