Analysis of Film Cooling and Full-Coverage Film Cooling of Gas Turbine Blades

Author:

Eckert E. R. G.1

Affiliation:

1. University of Minnesota, Department of Mechanical Engineering, Minneapolis, Minn. 55455

Abstract

Film cooling has become a standard method for the protection of the skin of gas turbine blades against the influence of the hot gas stream. The cooling air is usually injected into the boundary layer covering the skin through one or two rows of holes. A calculation method to predict heat transfer to the skin of a film cooled wall based on two parameters—the film effectiveness and a heat transfer coefficient defined with the adiabatic wall temperature—has been widely accepted. More recently, those sections of a turbine blade skin requiring intensive cooling are covered over its entire area with holes through which cooling air is ejected. A different method to predict the temperature of this section by this “full coverage film cooling” has been proposed which is based on two different parameters θ and K. The air used for the cooling of the perforated section of the skin also provides protection to a solid section located downstream in the normal film cooling process. The two methods are reviewed, and it is discussed under what conditions and in which way results obtained with one method can be transformed to the parameters used in the other one. Published data [8, 9] are used to calculate film cooling effectiveness values and Stanton numbers based on the adiabatic wall temperature for a perforated wall and a solid surface downstream of 11 rows of holes with coolant injection. The results demonstrate the advantage of this method which has been shown in previous experiments with ejection through one or two rows of holes, for film cooling of a solid surface. For full-coverage film cooling, there is still the advantage that a heat transfer coefficient defined with the adiabatic wall temperature is independent of temperature difference within the restrictions imposed by the superposition model.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3