An entropy-based failure prediction model for the creep process

Author:

Shirazi Zohreh1,Mohammadi Bijan1ORCID

Affiliation:

1. School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

The creep process is a life-limiting degradation mechanism for many parts. Consequently, it should have been considered throughout the design process. This study aimed to assess the creep curve of Inconel 718 by designing a fixed blade profile. The finite element model has been done using ABAQUS software. The temperature distribution of the vane was calculated to assess the thermal stress on the vane. For temperature analysis, the film subroutine code was written. The creep life prediction model was evaluated using creep subroutine. This model included an entropy model based on the Boltzmann theory and continuum damage mechanics. Stress and temperature were applied at a range from 100 to 900 MPa and from 620 to 800°C, respectively. Finally, an accumulation damage parameter was computed. In this investigation, all three parts of the creep curve can be achieved simultaneously. There was good agreement between the simulations performed on a vane based on this method and the samples studied in previous research.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3