Measured Force/Current Relations in Solid Magnetic Thrust Bearings

Author:

Allaire P. E.1,Fittro R. L.1,Maslen E. H.1,Wakefield W. C.2

Affiliation:

1. Mechanical, Aerospace, and Nuclear Engineering Department, University of Virginia, Charlottesville, VA 22903

2. Proctor & Gamble, Hunt Valley, MD 21030

Abstract

When magnetic bearings are employed in a pump, compressor, turbine, or other rotating machine, measurement of the current in the bearing coils provides knowledge of the forces imposed on the bearings. This can be a significant indicator of machine problems. Additionally, magnetic bearings can be utilized as a load cell for measuring impeller forces in test rigs. The forces supported by magnetic bearings are directly related to the currents, air gaps, and other parameters in the bearings. This paper discusses the current/force relation for magnetic thrust bearings. Force versus current measurements were made on a particular magnetic bearing in a test rig as the bearing coil currents were cycled at various time rates of change. The quasi-static force versus current relations were measured for a variety of air gaps and currents. The thrust bearing exhibits a hysteresis effect, which creates a significant difference between the measured force when the current is increasing as compared to that when the current is decreasing. For design current loops, 0.95 A to 2.55 A, at the time rate of change of 0.1 A/s, the difference between increasing and decreasing current curves due to hysteresis ranged from 4 to 8 percent. If the bearing is operated in small trajectories about a fixed (nonzero) operation point on the F/I (force/current) curve, the scatter in the measurement error could be expected to be on the order of 4 percent. A quasi-static nonlinear current/force equation was developed to model the data and curve-fit parameters established for the measured data. The effects of coercive force and iron reluctance, obtained from conventional magnetic materials tests, were included to improve the model, but theoretically calculated values from simple magnetic circuit theory do not produce accurate results. Magnetic fringing, leakage, and other effects must be included. A sinusoidal perturbation current was also imposed on the thrust bearing. Force/current magnitude and phase angle values versus frequency were obtained for the bearing. The magnitude was relatively constant up to 2 Hz but then decreased with frequency. The phase lag was determined to increase with frequency with value of 16 deg at 40 Hz. This effect is due to eddy currents, which are induced in the solid thrust-bearing components.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference21 articles.

1. Allaire, P. E., 1989, “Design and Test of a Magnetic Thrust Bearing,” Journal of the Franklin Institute, Vol. 326, No. 6, Dec.

2. Allaire, P., Imlach, J., McDonald, J., Humphris, R., Lewis, D., Blair, B., Claydon, J., and Flack R., 1989, “Design, Construction, and Test of a Magnetic Bearing in an Industrial Canned Motor Pump,” Proc. Texas A&M Pump Symposium, Houston, TX, May.

3. Allaire, P. E., Maslen, E. H., Humphris, R. R., Knospe, C. R., and Lewis, D. W., 1994a, “Magnetic Bearings,” Handbook of Lubrication and Tribology, Vol. 111, CRC Press, pp. 577–600.

4. Allaire, P. E., Fittro, R. L., Maslen, E. H., and Wakefield, W. C., 1994b, “Current/Force Relations in Solid Magnetic Bearings,” Proc. REVOLVE ’94, Calgary, Alberta, June 7–9.

5. Allaire P. E. , MaslenE. H., LewisD. W., and FlackR. D., 1997, “Magnetic Thrust Bearing Operation and Industrial Pump Application,” ASME JOURNAL FOR GAS TURBINES AND POWER, Vol. 119 this issue, pp. 168–173.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3