Suppression of Harmonic Current in Magnetic Bearing–Rotor System with Redundant Structure

Author:

Cheng Baixin,Cheng Xin,Song Shao,Zhou Rougang,Deng Shuai

Abstract

The magnetic bearing–rotor system has the advantages of no mechanical friction and active vibration control. A magnetic bearing with redundant structures provides an effective method to apply fault-tolerant control to the magnetic bearing–rotor system. In this paper, in order to improve the robustness of a rotor suspended by a magnetic bearing with redundant structures, the harmonic current suppression approach is proposed. Firstly, the generation mechanism of harmonic current in the magnetic bearing–rotor system is analyzed. Secondly, on the basis of the current distribution theory of magnetic bearing with redundant structures, the linearization model of electromagnetic force is established. Then, the eight-pole symmetrical radial magnetic bearing is taken as the research object, and the control system model with a multi-excitation disturbance source is established under the condition of no coil failure. Lastly, considering the periodicity of disturbance signals, a repetitive controller that is suitable for magnetic bearing with redundant structures is proposed in this paper, Moreover, in order to verify the effectiveness of the proposed control strategy, we inserted the repetitive controller into the original controller applied to the magnetically levitated rotor with redundant structures, and the corresponding simulation was carried out. The results demonstrate that the repetitive control method proposed in this paper can effectively suppress the harmonic current and improve the suspension accuracy of the rotor supported by the magnetic bearing with redundant structures.

Funder

Shenzhen Science and Technology Research and Development

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3