The Impact of Glenoid Labrum Thickness and Modulus on Labrum and Glenohumeral Capsule Function

Author:

Drury Nicholas J.1,Ellis Benjamin J.2,Weiss Jeffrey A.2,McMahon Patrick J.1,Debski Richard E.1

Affiliation:

1. Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219

2. Department of Bioengineering, University of Utah, Salt Lake City, UT 84112

Abstract

The glenoid labrum is an integral component of the glenohumeral capsule’s insertion into the glenoid, and changes in labrum geometry and mechanical properties may lead to the development of glenohumeral joint pathology. The objective of this research was to determine the effect that changes in labrum thickness and modulus have on strains in the labrum and glenohumeral capsule during a simulated physical examination for anterior instability. A labrum was incorporated into a validated, subject-specific finite element model of the glenohumeral joint, and experimental kinematics were applied simulating application of an anterior load at 0 deg, 30 deg, and 60 deg of external rotation and 60 deg of glenohumeral abduction. The radial thickness of the labrum was varied to simulate thinning tissue, and the tensile modulus of the labrum was varied to simulate degenerating tissue. At 60 deg of external rotation, a thinning labrum increased the average and peak strains in the labrum, particularly in the labrum regions of the axillary pouch (increased 10.5% average strain) and anterior band (increased 7.5% average strain). These results suggest a cause-and-effect relationship between age-related decreases in labrum thickness and increases in labrum pathology. A degenerating labrum also increased the average and peak strains in the labrum, particularly in the labrum regions of the axillary pouch (increased 15.5% strain) and anterior band (increased 10.4% strain). This supports the concept that age-related labrum pathology may result from tissue degeneration. This work suggests that a shift in capsule reparative techniques may be needed in order to include the labrum, especially as activity levels in the aging population continue to increase. In the future validated, finite element models of the glenohumeral joint can be used to explore the efficacy of new repair techniques for glenoid labrum pathology.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3