On the Leakage and Dynamic Force Coefficients of a Novel Stepped Shaft Pocket Damper Seal: Experimental and Numerical Verification

Author:

Yang Jing1,San Andrés Luis1,Lu Xueliang2

Affiliation:

1. J. Mike Walker '66 Department of Mechanical Engineering, Turbomachinery Laboratory, Texas A&M University, College Station, TX 77843

2. Atlas Copco Comptec LLC, Voorheesville, NY 12186

Abstract

Abstract High-performance turbomachinery favors annular seals with a large damping coefficient to ensure rotor system stability. Pocket damper seals (PDSs), a variation of labyrinth seals with axial blades (ribs) and adding circumferential partition walls (ridges), produce a favorable damping performance. To further enhance the damping characteristic and reduce leakage, a novel stepped shaft PDS is hereby introduced. The invention has a unique arrangement of steps on the rotor surface, each facing an upstream rib in a pocket row. Thus, the step and a blade tip form a tight clearance (c1), while the rotor surface and the downstream blade tip make a larger clearance (c2). The convergence–divergence variation of cross-sectional areas along the flow direction increases the PDS damping coefficient. To validate the performance of the novel design, a stepped shaft PDS (c1/c2 = 0.5) with four axial ribs and eight circumferential pockets is built and tested. A comprehensive investigation, experimental and computational, produces the seal leakage and dynamic force coefficients for the stepped shaft PDS, as well as similar performance characteristics for an identical PDS with a smooth rotor surface (c1/c2 = 1, i.e., a uniform clearance PDS). The stepped shaft PDS operates with air at supply pressure (PS) ranging from 1.1 bar to 3.2 bar. The measured leakage for the stepped shaft PDS is 50% of that for the uniform clearance PDS. Computational fluid dynamics (CFD) and bulk flow model (BFM) predictions of leakage agree well with the test data. For PS = 2.3 bar, the test damping coefficient (C) for the stepped shaft PDS is ~1.5 times greater than the one for the uniform clearance PDS. With an increase in PS to 3.2 bar, the stepped shaft PDS shows a two and one half increase in damping coefficient. In comparison to the test data, a CFD model overestimates C by 29% for operation at PS = 3.2 bar, though capturing the variation trend versus whirl frequency. The BFM largely underpredicts C for the stepped shaft PDS and is abandoned for future work. Both the test data and CFD predictions demonstrate the superior damping performance of the stepped shaft PDS, thus providing a novel alternative seal configuration for turbomachinery usage.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference32 articles.

1. Annular Gas Seals and Rotordynamics of Compressors and Turbines,1997

2. A New Damper Seal for Turbomachinery,1993

3. Modulated Pressure Damper Seals,1993

4. Test Results of a New Damper Seal in Vibration Reduction in Turbomachinery;ASME J. Eng. Gas Turb. Power,1996

5. Flow Induced Spring Coefficients of Labyrinth Seals for Application in Rotor Dynamics,1980

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3