Flow Continuity of Isothermal Elastohydrodynamic Point-Contact Lubrication Under Different Numerical Iteration Configurations

Author:

Qiu Liangwei1,Liu Shuangbiao2,Wang Zhijian3,Chen Xiaoyang1

Affiliation:

1. School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China

2. Tribo-Interface Design, 1309 Blue Sky Ct, Peachtree City, GA 30269

3. School of Urban Rail Transit, Changzhou University, Changzhou 213164, China

Abstract

Abstract Elastohydrodynamic lubrication (EHL) in point contacts can be numerically solved with various iteration methods, but so far the flow continuity of such solutions has not been explicitly verified. A series of closed regions with the same inlet side boundary is defined, and two treatments to total all flows related to the other boundaries of the closed regions are defined to enable flow-continuity verifications. The multigrid method and the traditional single mesh method with different relaxation configurations are utilized to solve different cases to evaluate computation efficiencies. For the multigrid method, the combination of a pointwise solver together with hybrid-relaxation factors is identified to perform better than other combinations. The single mesh method has inferior degrees of flow continuity than the multigrid method and needs much smaller error control values of pressure to achieve a decent level of flow continuity. Because flow continuity has a physical meaning, its verifications should be routinely included in any self-validation process for any EHL results. Effects of control errors of pressure, mesh sizes, differential schemes, and operating conditions on flow continuities are studied. Then, trends of film thickness with respect to speed are briefly discussed with meshes up to 4097 by 4097.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3