Formation of Wear-Protective Tribofilms on Different Steel Surfaces During Lubricated Sliding

Author:

Khan Arman Mohammad1,Ahmed Jannat1,Liu Shuangbiao1,Martin Tobias1,Berkebile Stephen2,Chung Yip-Wah3,Wang Q. Jane1

Affiliation:

1. Department of Mechanical Engineering,Northwestern University

2. DEVCOM Army Research Laboratory

3. Department of Materials Science and Engineering, Northwestern University

Abstract

Abstract We report here the impact of different alloying elements in steels on friction and wear behavior by performing ball-on-flat lubricated reciprocating tribotesting experiments on 52100 ball on steel flats with different compositions (52100, 1045, A2, D2, M2, and a specialty Cu-alloyed steel) heat-treated to give similar hardness and microstructure, with polyalphaolefin (PAO-4) as the lubricant. There are small variations of coefficient of friction among these alloys. The major observation is that steels containing high concentrations (≥ 10 wt.%) of Cr, Mo, and V gave rise to markedly reduced wear compared with 52100 or plain carbon steels. D2 steel, which contains 11.5 wt.% Cr as the major alloying element was the most wear-resistant. The wear resistance is strongly correlated with the efficiency of formation of carbon-containing oligomeric films at specimen surfaces as determined by Raman spectroscopy. This correlation holds for steels heat-treated to have higher hardness and with n-dodecane, a much less viscous lubricant compared with PAO-4. Given the strong affinity of chromium to oxygen, chromium should exist as Cr2O3 at the steel surfaces during testing. We have performed molecular dynamics simulation on Cr2O3 and demonstrated its ability to catalyze the formation of carbon-containing oligomeric films from hydrocarbon molecules, consistent with its known catalytic activity in other hydrocarbon reactions. We believe that chromium-containing alloys, such as D2, and coatings, such as CrN, derive their wear resistance in part from the efficient in-situ formation of wear-protective carbon tribofilms at contacting asperities.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3