Characterization of the Interdependence Between the Light Output and Self-Heating of Gallium Nitride Light-Emitting Diodes

Author:

Chatterjee Bikramjit1,Lundh James Spencer1,Shoemaker Daniel1,Kim Tae Kyoung2,Kim Hoyeon3,Giebnik Noel C.3,Kwak Joon Seop2,Cho Jaehee4,Choi Sukwon1

Affiliation:

1. Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802

2. Department of Printed Electronics Engineering, Sunchon National University, Suncheon 57922, South Korea

3. School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802

4. School of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju 54896, South Korea

Abstract

Abstract With the advent of gallium nitride (GaN) as an enabling material system for the solid-state lighting industry, high-power and high-brightness light-emitting diodes (LEDs) with wavelengths ranging from near ultraviolet to blue are being manufactured as part of a tremendously large and ever-increasing market. However, device self-heating and the environment temperature significantly deteriorate the LED's optical performance. Hence, it is important to accurately quantify the LED's temperature and correlate its impact on optical performance. In this work, three different characterization methods and thermal simulation were used to measure and calculate the temperature rise of an InGaN/GaN LED, as a result of self-heating. Nanoparticle-assisted Raman thermometry was used to measure the LED mesa surface temperature. A transient Raman thermometry technique was utilized to investigate the transient thermal response of the LED. It was found that under a 300 mW input power condition, self-heating is negligible for an input current pulse width of 1 ms or less. The temperature measured using nanoparticle-assisted Raman thermometry was compared with data obtained by using the forward voltage method (FVM) and infrared (IR) thermal microscopy. The IR and Raman measurement results were in close agreement whereas the data obtained from the widely accepted FVM underestimated the LED temperature by 5–10%. It was also observed that an increase in environment temperature from 25 °C to 100 °C would degrade the LED optical power output by 12%.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3