Eigenfrequency Computation of Beam/Plate Carrying Concentrated Mass/Spring

Author:

Zhang Yin1

Affiliation:

1. State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China

Abstract

With the adsorption of analyte on the resonator mass sensor, the system eigenfrequencies will shift due to the changes of inertial mass and structural rigidity. How to model those changes and formulate the eigenfrequency computation is very important to the mass sensor application, which results in different accuracies and requires different amounts of computation. Different methods on the eigenfrequency computation of a beam and a plate carrying arbitrary number of concentrated mass/spring are presented and compared. The advantages and disadvantages of these methods are analyzed and discussed. A new method called finite mode transform method (FMTM) is shown to have good convergence and require much less computation for a beam carrying concentrated mass/spring. Because the previous finite sine transform method (FSTM) has only been applied to compute the eigenfrequency of the plate with four edges simply supported carrying a single concentrated mass, here a generalized FSTM is also presented for the case of the same plate carrying arbitrary number of concentrated mass and spring. When the total number of concentrated mass and spring is small, FMTM and FSTM are demonstrated to be very efficient.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3