Regression-Based Modeling of a Fleet of Gas Turbine Engines for Performance Trending

Author:

Borguet S.1,Léonard O.1,Dewallef P.2

Affiliation:

1. Turbomachinery Group, University of Liège, Campus du Sart-Tilman, B52/3, Liège 4000, Belgium e-mail:

2. Laboratory of Thermodynamics, University of Liège, Campus du Sart-Tilman, B49, Liège 4000, Belgium e-mail:

Abstract

Module performance analysis is a well-established framework to assess changes in the health condition of the components of the engine gas-path. The primary material of the technique is the so-called vector of residuals, which are built as the difference between actual measurement taken in the gas-path and the values predicted by means of an engine model. Obviously, the quality of the assessment of the engine condition depends strongly on the accuracy of the engine model. The present paper proposes a new approach for data-driven modeling of a fleet of engines of a given type. Such black-box models can be designed by operators, such as airlines and third-party companies. The fleet-wide modeling process is formulated as a regression problem that provides a dedicated model for each engine in the fleet, while recognizing that all engines are of the same type. The methodology is applied to a virtual fleet of engines generated within the Propulsion Diagnostic Methodology Evaluation Strategy (ProDiMES) environment. The set of models is assessed quantitatively through the coefficient of determination and is further used to perform anomaly detection.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference24 articles.

1. Condition-Based Maintenance for Aircraft Engines,2004

2. Foundation of Gas Path Analysis (Part I and II),2003

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3