An Integrated Monitoring, Diagnostics, and Prognostics System for Aero-Engines under Long-Term Performance Deterioration

Author:

Pérez-Ruiz Juan Luis123ORCID,Tang Yu4ORCID,Loboda Igor5ORCID,Miró-Zárate Luis Angel2

Affiliation:

1. Unidad de Alta Tecnología-Facultad de Ingeniería, Universidad Nacional Autónoma de México, Juriquilla 76230, Mexico

2. Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey 64849, Mexico

3. Instituto de Investigación e Innovación en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico

4. Ningbo Institute of Technology, Zhejiang University, Ningbo 315104, China

5. Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Ciudad de México 04430, Mexico

Abstract

In the field of aircraft engine diagnostics, many advanced algorithms have been proposed over the last few years. However, there is still wide room for improvement, especially in the development of more integrated and complete engine health management systems to detect, identify, and forecast complex faults in a short time. Furthermore, it is necessary to ensure that these systems preserve their capabilities over time despite engine deterioration. This paper addresses these necessities by proposing an integrated system that considers the joint operation of feature extraction, anomaly detection, fault identification, and prognostic algorithms for engines with long operation times. To effectively reveal the actual engine condition, light adaptive degraded engine models are computed along with different health indicators that are used as inputs to train and test recognition and prediction models. The system is developed and evaluated using a specialized NASA platform which provides data from a turbofan engine fleet simultaneously experiencing long-term performance deterioration and faults. Contrary to other compared solutions, our results show that the proposed system is robust against the effects of engine deterioration, maintaining its level of detection, recognition, and prediction accuracy over a total engine service life. The low computational cost algorithms has generally fast performance in all stages, making the system suitable for online applications.

Funder

UNAM-DGAPA

Instituto Politécnico Nacional

Publisher

MDPI AG

Reference30 articles.

1. Performance-Based Gas Turbine Health Monitoring, Diagnostics, and Prognostics: A Survey;Hanachi;IEEE Trans. Reliab.,2018

2. An Overview of the State of the Art in Aircraft Prognostic and Health Management Strategies;Kordestani;IEEE Trans. Instrum. Meas.,2023

3. Krejsa, T., Němec, V., and Hrdinová, L. (2018). Proceedings of the 22nd International Scientific on Conference Transport Means, Kaunas University of Technology.

4. A Review of PHM Data Competitions from 2008 to 2017;Jia;Annu. Conf. PHM Soc.,2018

5. Machine learning for reliability engineering and safety applications: Review of current status and future opportunities;Xu;Reliab. Eng. Syst. Saf.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3