Heat Transfer in Rotating, Trailing Edge, Converging Channels With Full- and Partial-Height Strip-Fins

Author:

Sahin Izzet1,Chen I-Lun1,Wright Lesley M.1,Han Je-Chin1,Xu Hongzhou2,Fox Michael2

Affiliation:

1. Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843,

2. Solar Turbines Incorporated, San Diego, CA 92101,

Abstract

Abstract A wide variety of pin-fins have been used to enhance heat transfer in internal cooling channels. However, due to their large blockage in the flow direction, they result in an undesirable high pressure drop. This experimental study aims to reduce pressure drop while increasing the heat transfer surface area by utilizing strip-fins in converging internal cooling channels. The channel is designed with a trapezoidal cross section, converges in both transverse and longitudinal directions, and is also skewed β=120deg with respect to the direction of rotation to model a trailing edge cooling channel. Only the leading and trailing surfaces of the channel are instrumented, and each surface is divided into 18 isolated copper plates to measure the regionally averaged heat transfer coefficient. Utilizing pressure taps at the inlet and outlet of the channel, the pressure drop is obtained. Three staggered arrays of strip-fins are investigated: one full-height configuration and two partial fin height arrangements (Sz = 2 mm and 1 mm). In all cases, the strip-fins are 2 mm wide (W) and 10 mm long (Lf) in the flow direction. The fins are spaced such that Sy/Lf = 1 in the streamwise direction. However, due to the convergence, the spanwise spacing, Sx/W, was varied from 8 to 6.2 along the channel. The rotation number of the channel varied up to 0.21 by ranging the inlet Reynolds number from 10,000 to 40,000 and rotation speed from 0 to 300 rpm. It is found that the full-height strip-fin channel results in a more nonuniform spanwise heat transfer distribution than the partial-height strip-fin channel. Both trailing and leading surface heat transfer coefficients are enhanced under rotation conditions. The 2 mm height partial strip-fin channel provided the best thermal performance, and it is comparable to the performance of the converging channels with partial-length circular pins. The strip-fin channel can be a design option when the pressure drop penalty is a major concern.

Publisher

ASME International

Subject

Mechanical Engineering

Reference24 articles.

1. Heat Transfer and Flow Friction Characteristics of Very Rough Transverse Ribbed Surfaces With and Without Pin Fins;Metzger;ASME-JSME Therm. Eng. Joint Conf.,1983

2. Heat Transfer Contributions of Pins and Endwall in Pin-Fin Arrays: Effects of Thermal Boundary Condition Modeling;Chyu;ASME J. Turbomach.,1999

3. Turbulent Augmentation of Internal Convection Over Pins in Staggered-Pin Fin Arrays;Ames;ASME J. Turbomach.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3