Investigation of Shroud Geometry to Passively Improve Heat Transfer in a Solar Thermal Storage Tank

Author:

Zemler Matthew K.,Boetcher Sandra K. S.1

Affiliation:

1. e-mail:  Department of Mechanical Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114

Abstract

A shroud and baffle configuration is used to passively increase heat transfer in a thermal store. The shroud and baffle are used to create a vena contracta near the surface of the heat exchanger, which will speed up the flow locally and thereby increasing heat transfer. The goal of this study is to investigate the geometry of the shroud in optimizing heat transfer by locally increasing the velocity near the surface of the heat exchanger. Two-dimensional transient simulations are conducted. The immersed heat exchanger is modeled as an isothermal cylinder, which is situated at the top of a solar thermal storage tank containing water (Pr = 3) with adiabatic walls. The shroud and baffle are modeled as adiabatic, and the geometry of the shroud and baffle are parametrically varied. Nusselt numbers and fractional energy discharge rates are obtained for a range of Rayleigh numbers, 105 ≤ RaD ≤ 107 in order to determine optimal shroud and baffle configurations. It was found that a baffle width of 75% of the width of the heat exchanger provided the best heat transfer performance.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3