Effects of an Annular Baffle on Heat Transfer to an Immersed Coil Heat Exchanger in Thermally Stratified Tanks

Author:

Nicodemus Julia1,Smith Joshua2,Noreika Joseph22,Gomi Manaka22,Zhou Tingyu22

Affiliation:

1. Lafayette College Engineering Studies, , Easton, PA 18042

2. Lafayette College Mechanical Engineering, , Easton, PA 18042

Abstract

Abstract The effect of a cylindrical baffle on heat transfer to an immersed heat exchanger is investigated in initially thermally stratified tanks. The heat exchanger is located in the annular region created by the baffle and the tank wall. Three different cases of initial thermal stratification are explored, and in each case, experiments are conducted with and without the baffle in the stratified tank and in a comparable isothermal tank with the same initial energy, enabling exploration of the role of the baffle in a stratified tank and the role of stratification in tanks with or without the baffle. The baffle maintains the high initial temperature of the upper zone of the stratified tank for 10–16 min, as cool plumes that form on the heat exchanger are confined to the annular baffle region until they exit at the bottom of the tank. Regardless of stratification, the baffle always improves heat transfer to the immersed heat exchanger. In the isothermal tanks, the baffle increases total energy extracted in the first 30 min of discharge by over 20%. In stratified tanks, the baffle increases total energy extracted in 30 min of discharge by 9–16%. Initially, improvement in heat transfer in stratified tanks is due to the higher driving temperature differences around the heat exchanger. Later, after all the water from the hot zone has entered and flowed through the baffle, the tank is basically isothermal, and velocity increases as the fluid temperature drops, maintaining rates of heat transfer higher than that in the tank without the baffle. Stratification improves heat transfer in tanks without a baffle because, by design, the driving temperature difference between the heat exchanger wall and the surrounding fluid is considerably higher. However, in tanks with the baffle, stratification has only a modest positive effect on heat transfer to the immersed heat exchanger.

Publisher

ASME International

Reference24 articles.

1. Study of Energy Storage Systems and Environmental Challenges of Batteries;Dehghani-Sanij;Renew. Sustain. Energy Rev.,2019

2. Wind Energy: Increasing Deployment, Rising Environmental Concerns;Tabassum-Abbasi;Renew. Sustain. Energy Rev.,2014

3. Thermal Stratification Within the Water Tank;Han;Renew. Sustain. Energy Rev.,2009

4. A Review of Low-Flow, Stratified-Tank Solar Water Heating Systems;Hollands;Sol. Energy,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3