Stresses in a Multilayer Thin Film/Substrate System Subjected to Nonuniform Temperature

Author:

Feng X.1,Huang Y.2,Rosakis A. J.3

Affiliation:

1. Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P.R. China

2. Department of Civil/Environmental Engineering and Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208

3. Graduate Aeronautical Laboratory, California Institute of Technology, Pasadena, CA 91125

Abstract

Current methodologies used for the inference of thin film stress through curvature measurements are strictly restricted to uniform film stress and system curvature states over the entire system of a single thin film on a substrate. By considering a circular multilayer thin film/substrate system subjected to nonuniform temperature distributions, we derive relations between the stresses in each film and temperature, and between the system curvatures and temperature. These relations featured a “local” part that involves a direct dependence of the stress or curvature components on the temperature at the same point, and a “nonlocal” part, which reflects the effect of temperature of other points on the location of scrutiny. We also derive relations between the film stresses in each film and the system curvatures, which allow for the experimental inference of such stresses from full-field curvature measurements in the presence of arbitrary nonuniformities. These relations also feature a “nonlocal” dependence on curvatures making full-field measurements of curvature a necessity for the correct inference of stress. The interfacial shear tractions between the films and between the film and substrate are proportional to the gradient of the first curvature invariant, and can also be inferred experimentally.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3