Failure Prediction of Unidirectional Composites Undergoing Large Deformations1

Author:

Aboudi Jacob1,Volokh Konstantin Y.2

Affiliation:

1. Faculty of Engineering, Tel Aviv University, Ramat Aviv 69978, Israel e-mail:

2. Faculty of Civil Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel e-mail:

Abstract

In previous publications, strain-energy functions with limiters have been introduced for the prediction of onset of failure in monolithic isotropic hyperelastic materials. In the present investigation, such enhanced strain-energy functions whose ability to accumulate energy is limited have been incorporated with a finite strain micromechanical analysis. As a result, macroscopic constitutive equations have been established which are capable to predict the onset of loss of static stability in a hyperelastic phase of composite materials undergoing large deformations. The details of the micromechanical analysis, based on a tangential formulation, for composites with periodic microstructure are presented. The derived micromechanical analysis includes the capability to model a possible imperfect bonding between the composite’s constituents and to provide the field distribution in the composite. The micromechanical method is verified by comparison with analytical and finite difference solutions for porous hyperelastic materials that are valid in some special cases. Results are given for a rubberlike matrix characterized by softening hyperelasticity, reinforced by unidirectional nylon fibers. The response of the composite to various types of loadings is presented up to the onset of loss of static stability at a location within the hyperelastic rubber constituent, and initial failure envelopes are shown.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3