REVIEW OF THE ENERGY LIMITERS APPROACH TO MODELING FAILURE OF RUBBER

Author:

Volokh K. Y.1

Affiliation:

1. Faculty of Civil and Environmental Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel

Abstract

ABSTRACT Nonlinear theories of elasticity describe rubber deformation but not failure; however, in reality, rubbers do fail. In the present work, we review a new approach of energy limiters that allows for unifying hyperelasticity theories with failure descriptions, and we discuss results of this unification. First, we introduce the energy limiter concept, which allows the enforcement of failure descriptions in elasticity theories. The limiter provides the saturation value for the strain energy, hence indicating the maximal energy that may be stored and dissipated by an infinitesimal material volume. The limiter is a material constant that can be calibrated via macroscopic experiments. Second, we illustrate the new approach with examples in which failure initiation is predicted but its propagation is not tracked. Examples include the problems of crack initiation, cavity instability, and rupture of inflating membranes. In addition, the traditional strength-of-materials criteria are reassessed. Third, the theory is used for three-dimensional explicit finite element simulations of a high-velocity penetration of a stiff elastic body into a rubber plate. These simulations show that a high-velocity penetration of a flat projectile leads to a diffused nonlocal failure, which does not trigger the mesh sensitivity. To the contrary, a low-velocity penetration of a sharp projectile leads to a highly localized cracklike failure, which does trigger the mesh sensitivity. Calculation of the characteristic length of failure localization allows for setting the mesh size that provides regularization of the simulations. The fact that the calculation is based on results of solely macroscopic experiments is noteworthy.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3