Probabilistic Analysis of Composite Materials with Hyper-Elastic Components

Author:

Kamiński MarcinORCID,Sokołowski Damian

Abstract

This work is a comprehensive literature overview in the area of probabilistic methods related to composite materials with components exhibiting hyper-elastic constitutive behavior. A practical area of potential applications is seen to be rubber, rubber-like, or even rubber-based heterogeneous media, which have a huge importance in civil, mechanical, environmental, and aerospace engineering. The overview proposed and related discussion starts with some general introductory remarks and a general overview of the theories and methods of hyper-elastic material with a special emphasis on the recent progress. Further, a detailed review of the current trends in probabilistic methods is provided, which is followed by a literature perspective on the theoretical, experimental, and numerical treatments of interphase composites. The most important part of this work is a discussion of the up-to-date methods and works that used the homogenization method and effective medium analysis. There is a specific focus on random composites with and without any interface defects, but the approaches recalled here may also serve as well in sensitivity analysis and optimization studies. This discussion may be especially helpful in all engineering analyses and models related to the reliability of elastomers, whose applicability range, which includes energy absorbers, automotive details, sportswear, and the elements of water supply networks, is still increasing, as well as areas where a stochastic response is the basis of some limit functions that are fundamental for such composites in structural health monitoring.

Funder

National Science Center in Cracow, Poland

Publisher

MDPI AG

Subject

General Materials Science

Reference308 articles.

1. Mark, J.E. (2007). Physical Properties of Polymers Handbook, Springer. [2nd ed.].

2. Reinforcement of elastomers;Heinrich;Curr. Opin. Solid State Mat. Sci.,2002

3. Vilgis, T.A., Heinrich, G., and Klüppel, M. (2009). Reinforcement of Polymer Nanocomposites: Theory, Experiment and Applications, Cambridge University Press.

4. Thermoplastic polyurethane composites reinforced with renewable and sustainable fillers—A review;Khalifa;Polym. Technol. Mater.,2020

5. Particulate Composite Materials: Numerical Modeling of a Cross-Linked Polymer Reinforced With Alumina-Based Particles;Polym. Mech.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3