An Evaluation of Engine Faults Diagnostics Using Artificial Neural Networks

Author:

Lu P.-J.1,Zhang M.-C.2,Hsu T.-C.1,Zhang J.2

Affiliation:

1. Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan

2. Department of Jet Propulsion and Power, Beijing University of Aeronautics and Astronautics, Beijing, China

Abstract

Application of artificial neural network (ANN)-based method to perform engine condition monitoring and fault diagnosis is evaluated. Back-propagation, feedforward neural nets are employed for constructing engine diagnostic networks. Noise-contained training and testing data are generated using an influence coefficient matrix and the data scatters. The results indicate that under high-level noise conditions ANN fault diagnosis can only achieve a 50–60 percent success rate. For situations where sensor scatters are comparable to those of the normal engine operation, the success rates for both four-input and eight-input ANN diagnoses achieve high scores which satisfy the minimum 90 percent requirement. It is surprising to find that the success rate of the four-input diagnosis is almost as good as that of the eight-input. Although the ANN-based method possesses certain capability in resisting the influence of input noise, it is found that a preprocessor that can perform sensor data validation is of paramount importance. Autoassociative neural network (AANN) is introduced to reduce the noise level contained. It is shown that the noise can be greatly filtered to result in a higher success rate of diagnosis. This AANN data validation preprocessor can also serve as an instant trend detector which greatly improves the current smoothing methods in trend detection. It is concluded that ANN-based fault diagnostic method is of great potential for future use. However, further investigations using actual engine data have to be done to validate the present findings.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3