Modification of Tribolayers of a Titanium Alloy Sliding against a Steel

Author:

Zhou Y.1,Jiang W.2,Chen W.2,Ji X. L.3,Jin Y. X.4,Wang S. Q.2

Affiliation:

1. School of Shipping and Mechatronic Engineering, Taizhou University, No. 93 Jichuan West Road, Taizhou 225300, China e-mail:

2. School of Materials Science and Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China e-mail:

3. Engineering Research Center of Dredging Technology, Ministry of Education, Hohai University, No. 5 Hehai Road, Changzhou 213022, China e-mail:

4. School of Materials Science and Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang 212003, China e-mail:

Abstract

The nonprotective tribolayers of the titanium alloy were modified into additives-containing tribolayers through an artificial addition of multilayer graphene (MLG), Fe2O3 nanomaterials, or their mixtures with various proportions on the titanium alloy/steel sliding interface. The sustainability of the modified tribolayers under a high load was evaluated by the critical sliding distance for a mild-to-severe wear transition. The modified tribolayers were found to significantly improve or deteriorate tribological performance of the titanium alloy, which was decided by their ingredients. The pure MLG- or Fe2O3-containing tribolayers, because of their lacking load-bearing or lubricant capacity, presented poor sustainability and readily lost protection to cause high wear loss or frictional coefficient. However, for the addition of various mixtures of MLG and Fe2O3, the modified tribolayers possessed a double-layer structure consisting of friction-reducing MLG- and wear-resistant Fe2O3-predominated layers. They presented a sustainable protection, thus remarkably improving the tribological performance of the titanium alloy.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3