Effect of Lubricant Type on the Friction Behaviours and Surface Topography in Metal Forming of Ti-6Al-4V Titanium Alloy Sheets

Author:

Szpunar MarcinORCID,Trzepieciński TomaszORCID,Żaba KrzysztofORCID,Ostrowski RobertORCID,Zwolak MarekORCID

Abstract

The aim of the research described in this paper is to analyse the synergistic effect of types of synthetic oil and their density on the value of the coefficient of friction (COF) of Ti-6Al-4V titanium alloy sheets. Lubrication performance of commercial synthetic oils (machine, gear, engine and hydraulic) was tested in a strip draw friction test. The friction tests consisted of pulling a strip specimen between two cylindrical fixed countersamples. The countersamples were placed in the simulator base mounted on a uniaxial tensile test machine. Due to the complex synergistic effect of different strip drawing test parameters on the COF, artificial neural networks were used to find this relationship. In the case of both dry and lubricated conditions, a clear trend was found of a reduction of the coefficient of friction with nominal pressure. Engine oil 10W-40 was found to be the least favourable lubricant in reducing the coefficient of friction of Grade 5 titanium sheets. The two main tribological mechanisms, i.e., galling and ploughing, played the most important role in the friction process on the test sheets. In the range of nominal pressures considered, and with the synthetic oils tested, the most favourable lubrication conditions can be obtained by using a type of oil with a low viscosity index and a high kinematic viscosity.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3