Affiliation:
1. Stanford University, Stanford, CA
Abstract
We describe a set of techniques to permit the fabrication of multi-material layered prototypes with embedded flexible components such as reinforcing fibers, fabrics and electrical wiring. The main challenges are to maintain the shapes of the flexible elements during processing and to control precisely the geometries of adjacent regions of part material without either damaging the flexible elements or being hindered by them. The solutions involve sequences of controlled deposition and/or removal of part material and sacrificial “buffer” material. Functional considerations concerning strength and fatigue life may induce additional constraints on the processing sequence. Where conventional material removal is impractical, we present a new approach involving a hybrid of photolithography and shape deposition manufacturing. Alternative methods of achieving similar functions without cross-boundary embedding can ease fabrication and even improve performance. Design and process selection guidelines have been composed based on fabrication experience.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献