Heat Transfer Enhancement Caused by Sliding Bubbles

Author:

Bayazit Baris B.1,Hollingsworth D. Keith1,Witte Larry C.1

Affiliation:

1. Heat Transfer and Phase Change Laboratory, Department of Mechanical Engineering, University of Houston, Houston, TX 77204

Abstract

Measurements that illustrate the enhancement of heat transfer caused by a bubble sliding under an inclined surface are reported. The data were obtained on an electrically heated thin-foil surface that was exposed on its lower side to FC-87 and displayed the output of a liquid crystal coating on the upper (dry) side. A sequence of digital images was obtained from two cameras: one that recorded the response of the liquid crystal and one that recorded images of the bubble as it moved along the heated surface. With this information, the thermal imprint of the bubble was correlated to its motion and position. A bubble generator that produced FC-87 bubbles of repeatable and controllable size was also developed for this study. The results show that both the microlayer under a sliding bubble and the wake behind the bubble contribute substantially to the local heat transfer rate from the surface. The dynamic behavior of the bubbles corresponded well with studies of the motion of adiabatic bubbles under inclined plates, even though the bubbles in the present study grew rapidly because of heat transfer from the wall and the surrounding superheated liquid. Three regimes of bubble motion were observed: spherical, ellipsoidal and bubble-cap. The regimes depend upon bubble size and velocity. A model of the heat transfer within the microlayer was used to infer the microlayer thickness. Preliminary results indicate a microlayer thickness of 40–50 μm for bubbles in FC-87 and a plate inclination of 12 deg.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3