Interface Capturing Flow Boiling Simulations in a Compact Heat Exchanger

Author:

Iskhakova Anna1,Kondo Yoshiyuki2,Tanimoto Koichi2,Dinh Nam T.1,Bolotnov Igor A.1

Affiliation:

1. North Carolina State University , Raleigh, NC 27607

2. Mitsubishi Heavy Industries, Ltd. , 2-3 Marunouchi 3-Chome, Chiyoda-ku, Tokyo 100-8332, Japan

Abstract

Abstract High-fidelity flow boiling simulations are conducted in a vertical mini channel with offset strip fins (OSF) using R113 as a working fluid. Finite-element code PHASTA coupled with level set method for interface capturing is employed to model multiple sequential bubble nucleation using transient three-dimensional approach. The code performance is validated against experiments for a single nucleation site in a vertical rectangular channel. To assess code performance, a study on the bubble departure from the wall in a mini channel with OSF is carried out first. Contributions from the microlayer are not considered due to low heat flux values applied to the channel (1 kW/m2). The influence of surface characteristics, such as contact angle and liquid superheat on bubble dynamics, is also analyzed as well as the local two-phase heat transfer coefficient. For higher void fractions, two conical nucleation cavities are introduced in the same channel with OSF. Observed bubble characteristics (departure diameter, bubble departure frequency) are evaluated and bubble trajectories are presented and analyzed. The local heat transfer coefficient is then evaluated for each simulation. The results show approximately a 2.5 time increase in the local heat transfer coefficient when the individual bubbles approach the wall. With smaller bubble nucleation diameters, the heat transfer coefficient can increase by up to a factor of two. Thus, the current work demonstrates the flow modeling capability of the boiling phenomena in complex geometry with OSF.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3