Affiliation:
1. Department of Civil, Environmental, and Geo-Engineering, University of Minnesota , Minneapolis, MN 55455-0116
Abstract
Abstract
Converting mechanical vibrations into electrical power with vibratory energy harvesters can ensure the portability, efficiency, and sustainability of electronic devices and batteries. Vibratory energy harvesters are typically modeled as nonlinear oscillators subject to random excitation, and their design requires a complete characterization of their probabilistic responses. However, simulation techniques such as Monte Carlo are computationally prohibitive when the accurate estimation of the response probability distribution is needed. Alternatively, approximate methods such as stochastic averaging can estimate the probabilistic response of such systems at a reduced computational cost. In this paper, the Hilbert transform based stochastic averaging is used to model the output voltage amplitude as a Markovian stochastic process with dynamics governed by a stochastic differential equation with nonlinear drift and diffusion terms. Moreover, the voltage amplitude dependent damping and stiffness terms are determined via an appropriate equivalent linearization, and the stationary probability distribution of the output voltage amplitude is obtained analytically by solving the corresponding Fokker–Plank equation. Two examples are used to demonstrate the accuracy of the obtained analytical probability distributions via comparisons with Monte Carlo simulation data.
Subject
Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献