Targeted Versus Continuous Delivery of Volatile Anesthetics During Cholinergic Bronchoconstriction

Author:

Mondoñedo Jarred R.1,McNeil John S.2,Herrmann Jacob3,Simon Brett A.4,Kaczka David W.5

Affiliation:

1. Department of Biomedical Engineering, School of Medicine, Boston University, Boston, MA 02215

2. Department of Anesthesiology, University of Virginia, Charlottesville, VA 22903

3. Department of Anesthesiology; Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242

4. Department of Anesthesiology and Critical Care Medicine; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065

5. Department of Anesthesiology, Biomedical Engineering, and Radiology; Department of Biomedical Engineering; Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242 e-mail:

Abstract

Volatile anesthetics have been shown to reduce lung resistance through dilation of constricted airways. In this study, we hypothesized that diffusion of inhaled anesthetics from airway lumen to smooth muscle would yield significant bronchodilation in vivo, and systemic recirculation would not be necessary to reduce lung resistance (RL) and elastance (EL) during sustained bronchoconstriction. To test this hypothesis, we designed a delivery system for precise timing of inhaled volatile anesthetics during the course of a positive pressure breath. We compared changes in RL, EL, and anatomic dead space (VD) in canines (N = 5) during pharmacologically induced bronchoconstriction with intravenous methacholine, and following treatments with: (1) targeted anesthetic delivery to VD and (2) continuous anesthetic delivery throughout inspiration. Both sevoflurane and isoflurane were used during each delivery regimen. Compared to continuous delivery, targeted delivery resulted in significantly lower doses of delivered anesthetic and decreased end-expiratory concentrations. However, we did not detect significant reductions in RL or EL for either anesthetic delivery regimen. This lack of response may have resulted from an insufficient dose of the anesthetic to cause bronchodilation, or from the preferential distribution of air flow with inhaled anesthetic delivery to less constricted, unobstructed regions of the lung, thereby enhancing airway heterogeneity and increasing apparent RL and EL.

Funder

"National Heart, Lung, and Blood Institute"

National Institute of Biomedical Imaging and Bioengineering

Publisher

ASME International

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3