Different contributions from lungs and chest wall to respiratory mechanics in mice, rats, and rabbits

Author:

Südy Roberta12,Fodor Gergely H.1,Dos Santos Rocha André1,Schranc Álmos2,Tolnai József2,Habre Walid1,Peták Ferenc2

Affiliation:

1. Unit for Anesthesiological Investigations, Department of Acute Medicine, University of Geneva, Geneva, Switzerland

2. Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary

Abstract

Changes in lung mechanics are frequently inferred from intact-chest measures of total respiratory system mechanics without consideration of the chest wall contribution. The participation of lungs and chest wall in respiratory mechanics has not been evaluated systematically in small animals commonly used in respiratory research. Thus, we compared these contributions in intact-chest mice, rats, and rabbits and further characterized the influence of positive end-expiratory pressure (PEEP). Forced oscillation technique was applied to anesthetized mechanically ventilated healthy animals to obtain total respiratory system impedance (Zrs) at 0, 3, and 6 cmH2O PEEP levels. Esophageal pressure was measured by a catheter-tip micromanometer to separate Zrs into pulmonary (ZL) and chest wall (Zcw) components. A model containing a frequency-independent Newtonian resistance (RN), inertance, and a constant-phase tissue damping (G) and elastance (H) was fitted to Zrs, ZL, and Zcw spectra. The contribution of Zcw to RN was negligible in all species and PEEP levels studied. However, the participation of Zcw in G and H was significant in all species and increased significantly with increasing PEEP and animal size (rabbit > rat > mice). Even in mice, the chest wall contribution to G and H was still considerable, reaching 47.0 ± 4.0(SE)% and 32.9 ± 5.9% for G and H, respectively. These findings demonstrate that airway parameters can be assessed from respiratory system mechanical measurements. However, the contribution from the chest wall should be considered when intact-chest measurements are used to estimate lung parenchymal mechanics in small laboratory models (even in mice), particularly at elevated PEEP levels. NEW & NOTEWORTHY In species commonly used in respiratory research (rabbits, rats, mice), esophageal pressure-based estimates revealed negligible contribution from the chest wall to the Newtonian resistance. Conversely, chest wall participation in the viscoelastic tissue mechanical parameters increased with body size (rabbit > rat > mice) and positive end-expiratory pressure, with contribution varying between 30 and 50%, even in mice. These findings demonstrate the potential biasing effects of the chest wall when lung tissue mechanics are inferred from intact-chest measurements in small laboratory animals.

Funder

Swiss National Science Foundation (Schweizerische Nationalfonds)

Országos Tudományos Kutatási Alapprogramok (Hungarian Scientific Research Fund)

GINOP

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3