An Ankle Exoskeleton Using a Lightweight Motor to Create High Power Assistance for Push-Off

Author:

Liu Jiazhen123,Xiong Caihua4,Fu Chenglong5

Affiliation:

1. Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China;

2. Naval Logistics Academy, Tianjin 300450, China;

3. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, Chinae-mail: ljz15@tsinghua.org.cn

4. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, Chinae-mail: chxiong@hust.edu.cn

5. Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, Chinae-mail: fucl@sustc.edu.cn

Abstract

Abstract Active exoskeletons have capacity to provide biologically equivalent levels of joint mechanical power, but high mass of actuation units may lead to uncoordinated walking and extra metabolic consumption. Active exoskeletons normally supply assistance directly during push-off and have a power burst during push-off. Thus, the requirements on power of motors are high, which is the main reason for the high mass. However, in a muscle-tendon system, the strategy of injecting energy slowly and releasing quickly is utilized to obtain a higher peak power than that of muscle alone. Application of this strategy of peak power amplification in exoskeleton actuation might lead to reductions of input power and device mass. This paper presents an ankle exoskeleton which can accumulate the energy injected by a motor during the swing phase and mostly the stance phase and then release it quickly during push-off. An energy storage and release system was developed using a four-bar linkage clutch. In addition, evaluation experiments on the exoskeleton were carried out. Results show that the exoskeleton could provide a high power assistance with a low power motor and reduced the requirement on motor power by 4.73 times. Besides, when walking with the exoskeleton, the ankle peak power was reduced by 25.8% compared to the normal condition. The strategy which imitates the working pattern of the muscle-tendon system leads to a lightweight and effective exoskeleton actuation, and it also supplies ideas for the designs of lightweight actuators that work discontinuously in other conditions.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3