Affiliation:
1. Department of Mechanical Engineering, University of Idaho at Moscow, Moscow, ID 83844
Abstract
Abstract
Numerous natural and synthetic systems can be modeled as clusters of interacting cantilever beams. However, a closed-form mathematical model capable of representing the mechanics of multiple interacting cantilever beams undergoing large deflections has yet to be presented. In this work, a pioneering mathematical model of the force–deflection response of multiple, inline, interacting (i.e., contacting) cantilever beams is presented. The math model enables the determination of the force–deflection response of a system of interacting cantilever beams and is predicated upon the “Pseudo Rigid Body Model” concept. The model was validated through data triangulation experiments which included both physical and computational studies. An analysis of the mathematical model indicates it is most accurate with deflections less than 50 deg. In the future, the model may be used in high throughput phenotyping applications for investigating stalk lodging and estimating the flexural rigidity of crop stems. The model can also be used to gain intuition and aid in the design of synthetic systems composed of multiple cantilever beams.
Funder
National Science Foundation
U.S. Department of Agriculture
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献