Experimental error analysis of biomechanical phenotyping for stalk lodging resistance in maize

Author:

DeKold Joseph,Robertson Daniel

Abstract

AbstractStalk lodging destroys between 5 and 25% of grain crops annually. Developing crop varieties with improved lodging resistance will reduce the yield gap. Field-phenotyping equipment is critical to develop lodging resistant crop varieties, but current equipment is hindered by measurement error. Relatively little research has been done to identify and rectify sources of measurement error in biomechanical phenotyping platforms. This study specifically investigated sources of error in bending stiffness and bending strength measurements of maize stalks acquired using an in-field phenotyping platform known as the DARLING. Three specific sources of error in bending stiffness and bending strength measurements were evaluated: horizontal device placement, vertical device placement and incorrect recordings of load cell height. Incorrect load cell heights introduced errors as large as 130% in bending stiffness and 50% in bending strength. Results indicated that errors on the order of 15–25% in bending stiffness and 1–10% in bending strength are common in field-based measurements. Improving the design of phenotyping devices and associated operating procedures can mitigate this error. Reducing measurement error in field-phenotyping equipment is crucial for advancing the development of improved, lodging-resistant crop varieties. Findings have important implications for reducing the yield gap.

Funder

National Science Foundation EPSCoR, USA

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference60 articles.

1. ChartsBin. Daily Calorie Intake Per Capita. ChartsBin http://chartsbin.com/view/1150.

2. FAOSTAT. https://www.fao.org/faostat/en/#data/FBS.

3. Corn. USDA Foreign Agricultural Service https://www.fas.usda.gov/commodities/corn.

4. World Agricultural Production. USDA Foreign Agricultural Service https://www.fas.usda.gov/data/world-agricultural-production.

5. Rattray, J. & Brokaw, S. C. The implications of the increasing global demand for corn. in (2012).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3