Experimental Investigation of Microscopic/Macroscopic Efficiency of Polymer Flooding in Fractured Heavy Oil Five-Spot Systems

Author:

Hossein Sedaghat Mohammad1,Hossein Ghazanfari Mohammad2,Parvazdavani Mohammad3,Morshedi Saeid2

Affiliation:

1. e-mail:

2. Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, 11365-9465, Iran

3. EOR Studies Center, Research Institute of Petroleum Institute (RIPI), Tehran, 18745-4163, Iran

Abstract

This paper concerns on experimental investigation of biopolymer/polymer flooding in fractured five-spot systems. In this study, a series of polymer injection processes were performed on five-spot glass type micromodels saturated with heavy crude oil. Seven fractured glass type micromodels were used to illustrate the effects of polymer type/concentration on oil recovery efficiency in presence of fractures with different geometrical properties (i.e., fractures orientation, length and number of fractures). Four synthetic polymers as well as a biopolymer at different levels of concentration were tested. Also a micromodel constituted from dead-end pores with various geometrical properties was designed to investigate microscopic displacement mechanisms during polymer/water flooding. The results showed that polymer flooding is more efficient by using hydrolyzed synthetic polymers with high molecular weight as well as locating injection well in a proper position respect to the fracture geometrical properties. In addition, by monitoring of microscopic efficiency, pulling, stripping, and oil thread flow mechanisms were detected and discussed. The results showed that flow rate, fluid type, polymer concentration, and geometrical properties of pores influence the efficiency of mentioned mechanisms. Furthermore, it was detected that polymer's velocity profile play a significant role on oil recovery efficiency by influencing both macroscopic and microscopic mechanisms. This study demonstrates different physical and chemical conditions that affect the efficiency of this enhanced oil recovery method.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3