Polymer Flooding Review

Author:

Needham Riley B.1,Doe Peter H.1

Affiliation:

1. Phillips Petroleum Co.

Abstract

Distinguished Author Series articles are general, descriptiverepresentations that summarize the state of the art in an area of technology bydescribing recent developments for readers who are not specialists in thetopics discussed. Written by individuals recognized as experts in the area, these articles provide key references to more definitive work and presentspecific details only to illustrate the technology. Purpose: to informthe general readership of recent advances in various areas of petroleumengineering. Summary. This paper reviews published results of the use of polymers toimprove oil recovery, A discussion of the capabilities of the available typesof polymers and where they have been successful is coupled with the principlesof the mechanisms of polymer flooding to serve as a guide for futureapplications. The scope of this review is limited to case histories wherefull-scale polymer floods were applied, as opposed to near-well treatments. Introduction The purpose of this paper is to describe briefly the principles involved inpolymer flooding and to review field experience. Earlier reviews by Jewett and Schurz and Chang have covered much of this same ground. Chang, in particular, presents an extensive review of the polymer flooding literature. Therefore, wehave updated the list of literature rather than repeating those included inthese previous papers. We have tried to summarize the major points, particularly in relation to the most recent field case histories. The scope ofthis review is limited to what we refer to as "full-scale" polymer floods. Thisincludes those cases where crosslinking agents have been used to produce anin-depth permeability contrast correction, but excludes near-well, low-volumepolymer gel treatments. Consequently, all results of treatments of producingwells have been excluded from this review. Definition and Mechanisms of Polymer Flooding Oil and water are immiscible fluids. As a result, neither can completelydisplace the other from an oil reservoir. This is reflected in the irreduciblewater and residual oil saturations (ROS's) on a relative-permeability curve. Regardless of the amount of water cycled through the system, the oil saturationwill not be reduced below the ROS. In polymer flooding, a water-soluble polymeris added to the flood water. This increases the viscosity of the water. Depending on the type of polymer used, the effective permeability to water canbe reduced in the swept zones. Polymer flooding does not reduce the ROS, but israther a way to reach the ROS more quickly or to allow it to be reachedeconomically. There are three potential ways in which a polymer flood can make the oilrecovery process more efficient:through the effects of polymers onfractional flow,by decreasing the water/oil mobility ratio, andbydiverting injected water from zones that have been swept. Fractional Flow. The way in which a section of reservoir approaches itsultimate ROS is a function of the relative permeability relationships and ofthe viscosities of the oil and water phases. These are combined in the conceptof fractional flow. By applying Darcy's law to the oil and water phases flowingsimultaneously through a segment of a porous medium, the fractional flow of oil, fo, can be derived as (1) Any change that reduces the ratio / will improve the rate of oil recovery byincreasing the fractional flow of oil. Polymers can do this by increasing theviscosity of the water, . Once they have flooded a zone, some polymers alsoreduce the relative permeability to water, kw. This effect applies to any part of the reservoir where there is a mobile oilsaturation-i.e., anywhere that the relative permeability to oil is greater thanzero. However, if ko is already small because the mobile oil saturation is low, then fo will remain small at any achievable kw or . The fractional flow effecttherefore is more significant for polymer floods conducted early in the life ofa waterflood while the mobile oil saturation is high. An additional consideration is the oil viscosity, . All else being equal, the fractional flow of water will be greater in reservoirs where the oilviscosity is high. This leads to early water breakthrough and relatively highwater production when there is still a significant mobile oil saturation. Fractional flow effects are thus likely to be more significant in viscous oilreservoirs. Mobility Ratio. Real reservoirs cannot be swept uniformly. Even ahomogeneous reservoir suffers from less than 100% areal sweep at waterbreakthrough and at economically achievable water/oil ratios (WOR's). JPT P. 1503^

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3